

The Swift GRB MIDEX Mission

Neil Gehrels

NASA-GSFC

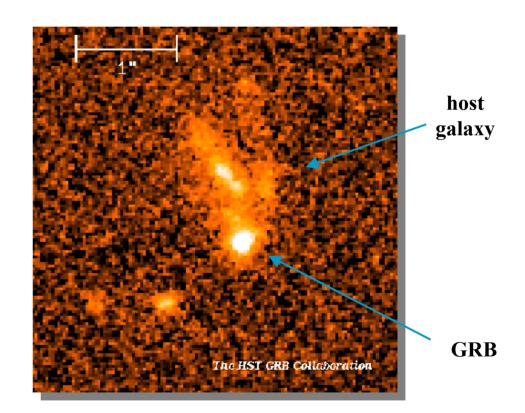
Swift PI

SEUS Meeting September 24, 2003

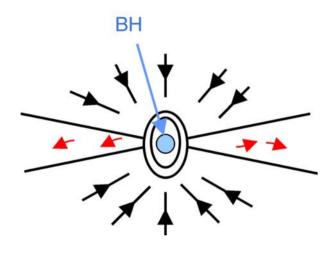
Recent Swift Development

- Swift launch date recently slipped from Dec. '03 to May '04
- Launch date at selection in 1999 was Sept. '03
- Conflict with Messenger usage of thermal vac facility at GSFC and launch site at KSC could cause additional 1 month delay
- Recent slip due to development problems this summer with main gamma-ray telescope (Burst Alert Telescope BAT)
 - Harness modification/replacement required to solve communication timing issue between processor and detector electronics (multiplex of 32,000 detectors)
- BAT is now complete. Other 2 instruments already on s/c.
- Spacecraft and 3 instruments uncompromised. Performance meets all specifications in 1999 proposal

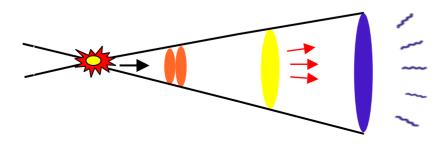
Swift Hardware Teams and Partners


http://swift.gsfc.nasa.gov

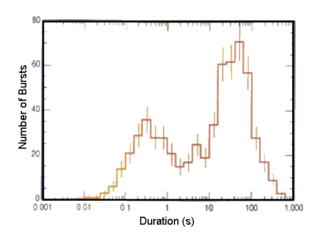
Scientific Motivation for Swift

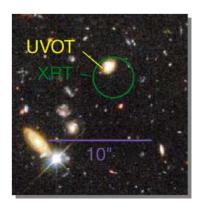

GRBs - The Ultimate SEU Phenomenon

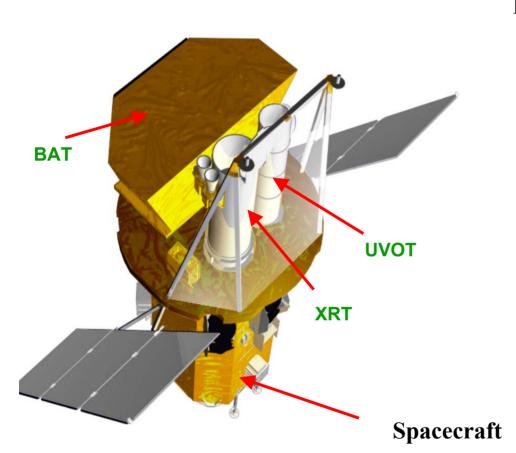
- Most powerful explosions in Universe
- Birth sites of black holes
- Ultra-relativistic outflows
- Relation to hypernovae, end-points of massive stars and nucleosynthesis
- Probes of the early Universe



Swift Designed to Answer GRB Key Questions

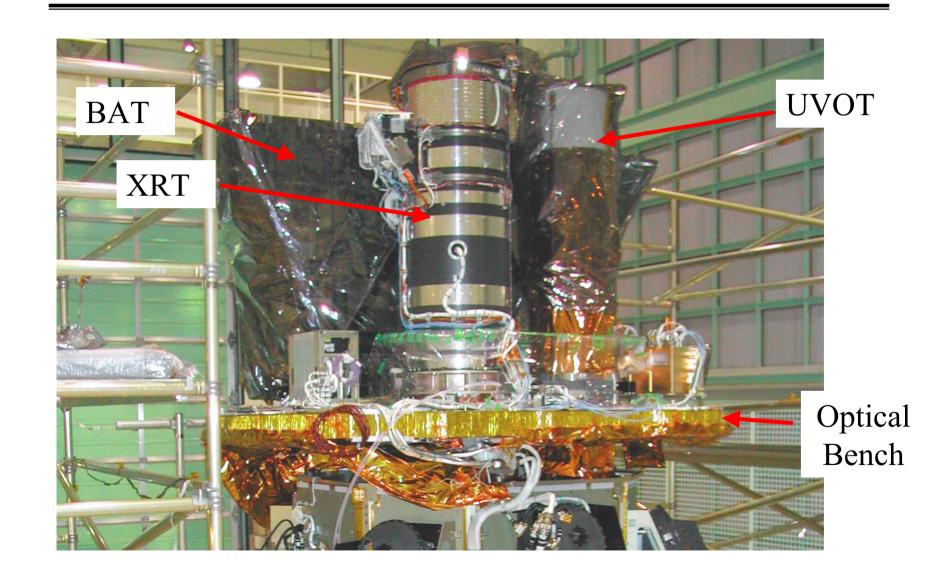

What causes GRBs?


What physics can be learned about BH formation and ultra-relativistic outflows?

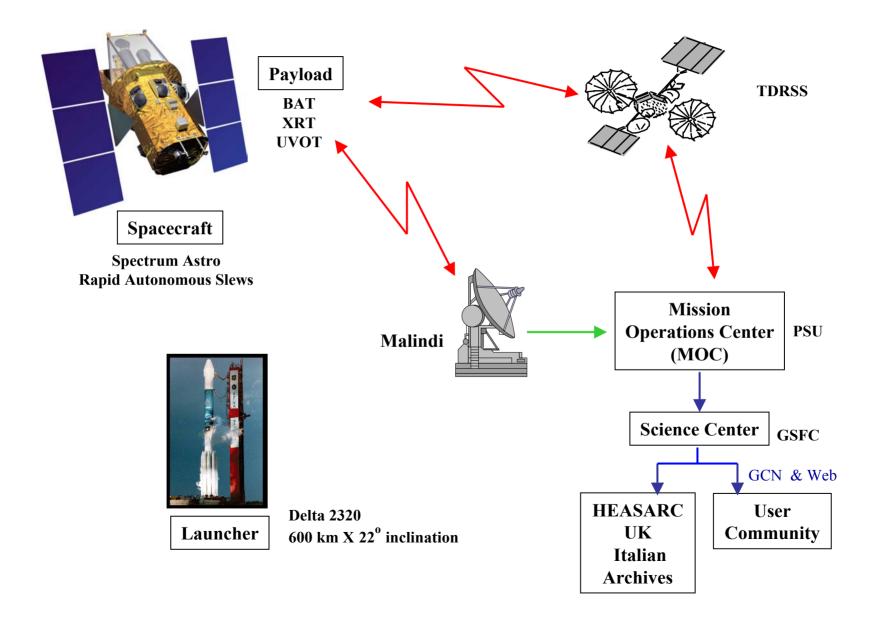

What is the nature of subclasses?

What can GRBs tell us about the early universe?

Swift Instruments



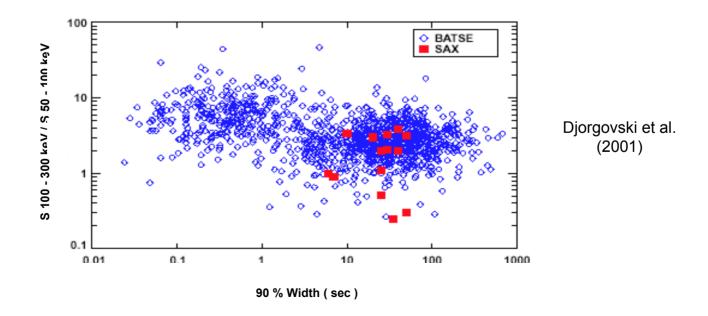
Instruments


- Burst Alert Telescope (BAT)
 - New CdZnTe detectors
 - 5200 cm²
- X-Ray Telescope (XRT)
 - Arcsecond GRB positions
 - CCD spectroscopy
- (UVOT) UV/Optical Telescope
 - Sub-arcsec imaging
 - Grism spectroscopy
 - 24th mag sensitivity (1000 sec)
 - Finding chart for other observers

- Autonomous re-pointing, 20 75 sec
- Onboard and ground triggers

The Actual Hardware

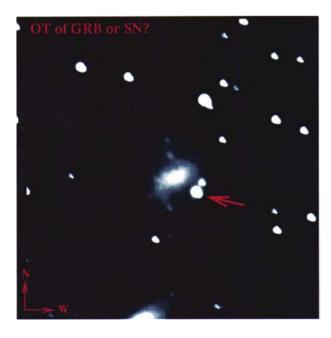
Swift Mission

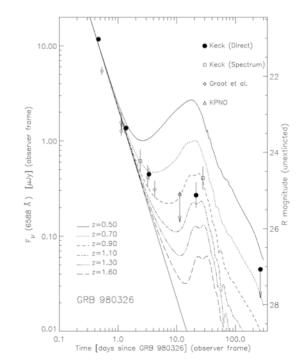

Mission Capabilities

- Multiwavelength follow-up observations starting in 1 min. and continuing for days
- >100 GRBs per year by BAT with rapid localizations
 - Recent simulations give 300 GRBs triggers and 170 localizations per year
 - Approximately 20% of Swift GRBs will be short/hard bursts
 - Several per year X-ray flashes and X-ray rich bursts
- BAT sensitivity factor of 2 to 5 better than BATSE
- Nominal mission lifetime of 2 years, with orbital lifetime of ~8 years
- Upload capability to slew to GRB and transients detected by other observatories
- Arcsec positions and counterparts for 100's of GRBs
- Identification of host galaxies and measurement of offsets
- Multiwavelength observations on all timescales
- X-ray and UV/optical spectroscopy
- Rapid GRB notifications via GCN

Swift Science (1)

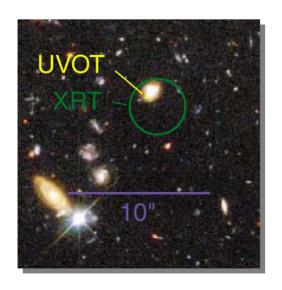
Short GRBs

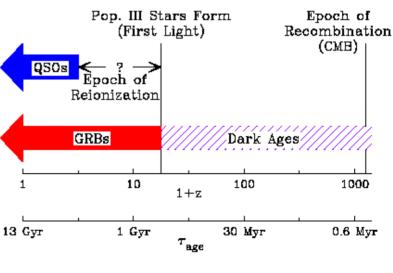

- Not understood. No counterparts detected.
- Appear to be a separate class. May have different physical origin.
- Non-detection of afterglow for GRB 020531 indicates that afterglow is weak or rapidly declining.
- Swift will perform rapid follow-up observations of ~100 short GRBs and solve this mystery.


Swift Science (2)

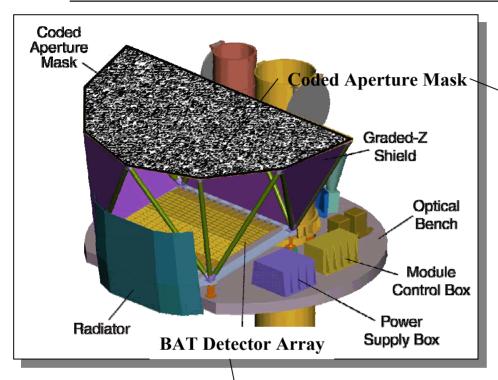
- Supernova-GRB connection
 - Connections between SNe Ic and GRB are emerging.
 - GRBs are contributing to fundamental understanding of core collapse, BH formation, the role of spin in stellar evolution, origin of jets and origin of elements
 - Swift's rapid subarcsec positions and lightcurve monitoring will allow SN searches on 100's GRBs. Questions addressed: What fraction and what kinds of GRBs have underlying SN?
 - Searches for X-ray lines from GRBs will probe the circumstellar environment to determine preexplosion history.

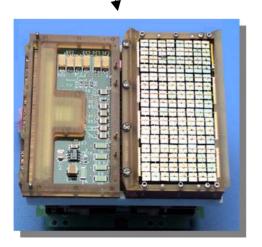
SN1998bw - GRB 980425




GRB 980326

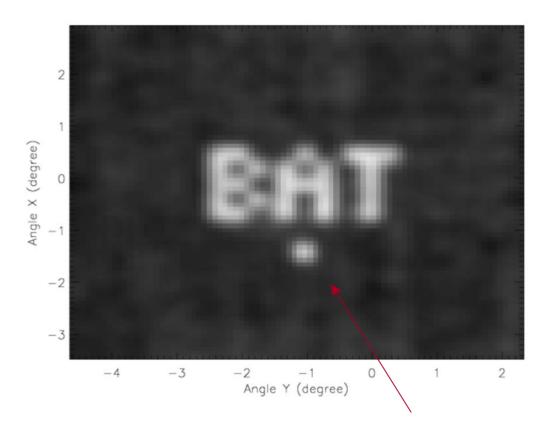
Swift Science (3)

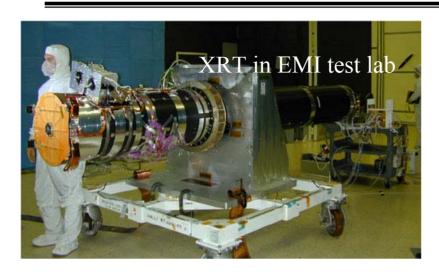

- Early Universe
 - GRBs are the brightest events in universe.
 - Afterglow is detectable to $z\sim15$ by Swift (3 to 15 per year at z>10)
 - Topics addressed:
 - Epoch of first stars (GRB may be unique probe of PopIII stars)
 - Star formation history
 - Re-ionization of IGM z = 17 + /-5 (Spergel et al. 2003)
 - Metallicity history
 - Dust and gas content of early galaxies
 - Large-scale structure of universe

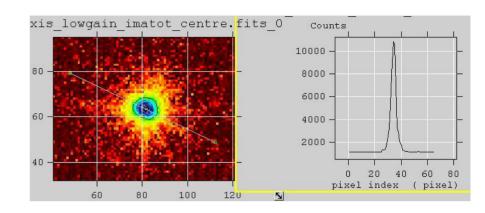


Lamb & Reichart (2000)

Burst Alert Telescope (BAT)




BAT Characteristics


Telescope	Coded Aperture
Telescope PSF	17 arcmin FWHM
Position Accuracy	1-4 arcminutes
Detector	CZT
Detector Format	32768 pixels
Energy Resolution	7 keV FWHM (ave.)
Timing Resolution	100 microseconds
Field of View	2 Steradians, partially-coded
Energy Range	15 – 150 keV
Detector Area	5200 cm ²
Sensitivity	0.2 photons/cm ² /s
Max Flux	195,000 cps (entire array)
Operation	Autonomous



17 arcmin PSF

X-ray Telescope (XRT)



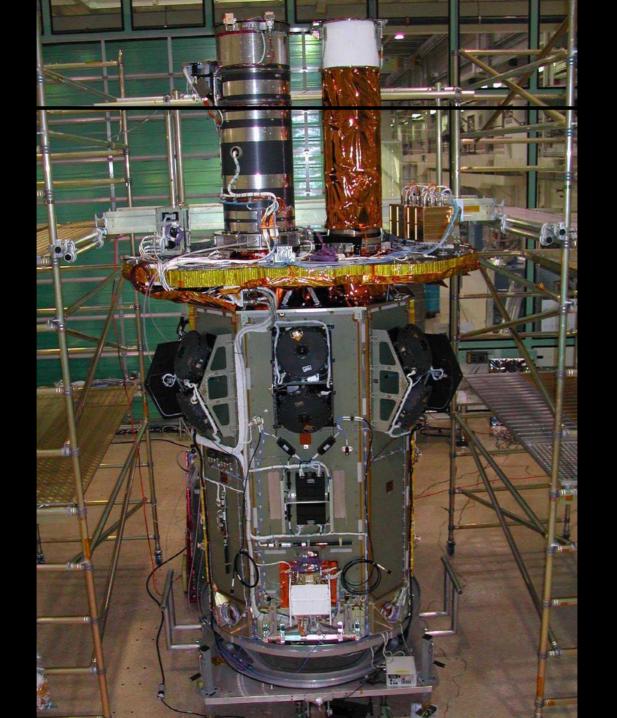
XRT Characteristics

Telescope	3.5 m Wolter I, 12 shells
Telescope PSF	18 arcsec HPD @ 1.5 keV
Position Accuracy	2.5 arcsec (2 sigma)
Detector	E2V CCD-22
Detector Format	600 x 600 pixels
Energy Resolution	140 eV @ 5.9 keV
Timing Resolution	0.14 / 1.1 milliseconds
Field of View	23.6 x 23.6 arcmin
Pixel Scale	2.36 arcsec / pixel
Energy Range	0.2 - 10 keV
Effective Area	110 cm^2 @ 1.5 keV
Sensitivity	$2x10^{-14}$ erg cm ⁻² s ⁻¹ in $2x10^4$ s
Max Flux	> 45 Crabs (45,000 cps)
Operation	Autonomous

UV/Optical Telescope (UVOT)

UVOT Characteristics

Telescope	30 cm Ritchie-Cretien		
Telescope PSF	0.9 arcsec FWHM @ 350 nm		
Position Accuracy	0.3 arcseconds (2 sigma)		
Detector	Microchannel-intensified CCD		
Detector Format	2048 x 2048 pixels		
Spectral Resolutn	>300 @ 300 nm for M _v < 17		
Timing Resolution	11 milliseconds		
Field of View	17 x 17 arcminutes		
Pixel Scale	0.5 arcsec / pixel		
Spectral Range	170 – 600 nm		
Sensitivity	24th magnitude in 1000 s		
Max source	8th magnitude		
Operation	Autonomous		



Swift Status (1)

- Spacecraft and instruments all at Goddard
- Spacecraft delivered in June 2002
- XRT and UVOT delivered in Nov.-Dec. 2002
- Full environmental test program completed on XRT/UVOT
- XRT, UVOT and sunshield mounted on optical bench
- BAT fabrication complete in September 2003
- BAT EMI test last week and thermal vac test next week
- BAT delivery to S/C planned for November 2003
- Observatory environmental testing Nov. '03 Mar. '04
- Observatory shipment to KSC planned for late March 2004
- Launch planned for May 2004

Swift Status (2)

- Observatory testing and science simulations underway
 - Malindi ground station (ASI) & ground network tests (including USN & back-up MOC)
 - Launch and early orbit "proc" tests Sim#1a complete
 - 1000 GRB sims at LANL showing promising results
- Funding in place in UK and Italy for post-launch support
- On-board and ground software largely complete (through build ~4 out of 6)
- Data plans (including PDMP) to be presented to SAWG on Oct. 27

Recent Meetings

- Scientific Meetings
 - AAS Nashville May 2003 (Swift Topical Session)
 - Santorini, Budapest August 2003
 - Sante Fe September 2003
- Swift science team meetings every 4 months
 - GRB experts from outside team invited to give advice
- Programmatic Meetings
 - Anne Kinney meeting September 3, 2003
 - Explorer Retreat September 30 October 1, 2003
- "Burst Advocate" workshop held at PSU Sept. 22-23, 2003

Swift Data Dissemination

- Rapid dissemination of burst positions and data to the world community via GCN and WWW. All data to everyone immediately.
- Triggers provided for ground and space telescopes: radio, IR, optical, x-ray, TeV, robotic, neutrino, gravitational wave, ...
- Follow-up team coordinated by Kevin Hurley
- Swift GI Program
 - Opportunities in Cycle 1
 - Correlative observations of GRBs with non-Swift instruments and observatories
 - New GRB projects using Swift data but not requiring GI-specified observatory pointings
 - Theoretical investigations that advance the mission science return in the area of GRBs
 - \$1M in grants to be awarded for cycle 1
 - 67 Notices of Intent received
 - Proposals due Dec. 1

Swift EPO Program

Led by Lynn Cominsky (Sonoma State University)

